
50	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus 1min ing s o f t war e ar c h ive s

Tracking Your Changes:
A Language-Independent Approach

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta, University of Sannio

Based on a
novel differencing
algorithm, this
approach to tracking
source code evolution
in real-world software
systems achieves
acceptable precision
and overcomes the
Unix diff’s versioning
limitations.

V
ersioning and bug-tracking systems are invaluable assets for large software proj-
ects that involve developers spread worldwide and numerous users reporting
bugs and proposing enhancements. In addition to supporting development, ver-
sioning systems are a precious source of information for studying or monitoring

a software system’s evolution.

Such monitoring requires tracking source code
artifacts across file revisions. Versioning systems
perform this tracking using the Unix diff algo-
rithm, which, to preserve space, treats any change
as the minimum sequence of additions and de-
letions. This process limits diff’s ability to dis-
tinguish line additions and removals from line
changes. If a source code line changes, the version-
ing system records it as the removal of the old line
and the addition of the new one. This makes it dif-
ficult to discern whether the change only partially
modified the old line or completely replaced it.

A degree of subjectivity is inherent in such a
classification because humans can disagree on the
extent to which something has changed. Still, we
foresee differencing algorithms that can make these
classifications within a reasonable margin of error.

We present an approach for tracking software
entities across multiple revisions of a file that relies
on our recently introduced language-independent
differencing algorithm.1 This algorithm over-
comes diff’s limitations and, unlike algorithms
based on the code Abstract Syntax Tree (AST),2
doesn’t require the code to be parsed. This makes
the algorithm suitable, if a detailed classification
of the change isn’t needed, for tracking the evolu-
tion of software entities treatable as a sequence of
lines, such as source code, but also requirements,
use cases, and test cases.

We implemented the differencing algorithm in
a tool named ldiff (line differencing), which has
syntax and output similar to the Unix diff. This
compatibility means that the tool’s use by diff
users and integration in integrated development
environments (IDEs) or recommender systems
relying on a Unix-diff-like algorithm can be im-
mediate. (For a detailed description of ldiff, see
the “Ldiff: A Support Tool” sidebar, and, for ad-
ditional approaches to tracking, see the “Related
Work in Differencing Algorithms” sidebar.)

Software-Entity Tracking
A software entity is a set of (not necessarily adja-
cent) lines from a textual artifact, such as a source
code clone, a source code line containing a vulner-
able statement, or a comment. Tracking the evolu-
tion of an entity within a file comprises four stages
that aim to identify the units of analysis, identify
the entities to be tracked, track the entities, and
identify entity changes.

Identify the Units of Analysis
A software entity’s evolution can be apparent across
system releases or single file commits, or by group-
ing logically related commits. As Harald Gall and
his colleagues proposed, a software system’s evolu-
tion is viewable as a sequence of snapshots.3 These
snapshots, they contend, develop from change sets,

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

	 January/February 2009 I E E E S o f t w a r e � 51

which represent the logical changes a developer
performs in terms of added, deleted, and changed
source code lines. Various approaches are available
for reconstructing such a sequence. We chose the
method that Thomas Zimmermann and his col-
leagues developed.4 Their approach considers the
sequences of file revisions that share the same au-
thor, branch, commit notes, and so on, such that
the difference between the time stamps of two sub-
sequent commits is 200 seconds or less.

Identify the Entity of Interest
Before tracking an entity’s evolution, we must first
identify the entity of interest in the source code or
textual file. The process can be manual (for exam-
ple, the developer identifies a source code entity to
track) or automatic (as with clones or vulnerabili-
ties, which we’ll discuss in a moment). Either option
identifies the entity as a set of textual or source code
file lines. The next stages will track the changes in
these lines.

Ldiff: A Support Tool

New event

Merge

New event

1: Use case name: Rent Video
2:
3: Primary actor: Clerk
 ...
17: Basic flow of events:
18:
19: - Clerk enters Customer ID.
20: - Clerk enters rental identifier.
21: - System records rental line item and presents item description.
22: (Clerk repeats “System records …” until indicates done.)
23: - System displays total.
24: - Customer pays. System handles payment.
25: - Clerk requests rental report.
26: - System outputs it. Clerk gives it to Customer.

1: Use case name: Rent Video
2:
3: Primary actor: Clerk
 ...
17: Basic flow of events:
18:
19: - Clerk authenticates itself.
20: - Clerk enters Customer ID.
21: - Clerk enters rental identifier.
22: - System records rental line item and presents item description.
23: (Clerk repeats “System records …” until indicates done.)
24: - System displays total.
25: - Customer pays. System handles payment.
26: - System outputs rental report.
27: - Clerk inserts payment information.

$ ldiff.pl -i 1 -ht word -hm cosine -HT 0.5:all -lt char -lm leven -LT 0.4 usecase-1.1.txt usecase-1.2.txt
18a19,19
> - Clerk authenticates itself.
25,25c26,26
< - Clerk requests rental report.

> - System outputs rental report.
25a27,27
> - Clerk inserts payment information.
26,26d26
< - System outputs it. Clerk gives it to Customer.

(1)

(2)

$ diff usecase-1.1.txt usecase-1.2.txt
18a19
> - Clerk authenticates itself.
25,26c26,27
< - Clerk requests rental report.
< - System outputs it. Clerk gives it to Customer.

> - System outputs rental report.
> - Clerk inserts payment information.

usecase-1.1.txt usecase-1.2.txt

Figure A. Comparing approaches. (1) We used ldiff and diff on two versions of a text artifact. (2) The Unix diff
was unable to detect the last added use-case event.

Our approach to tracking software entities relies on ldiff, a
differencing algorithm that has syntax and output similar to
the Unix diff. A Perl implementation of our differencing algo-
rithm is available at http://rcost.unisannio.it/cerulo/tools.html.
The tool supports various hunk similarity metrics (cosine, Jac-
card, dice, and overlap) and text item extraction techniques
(chars, words, n–grams, and C/C++/Java language tokens).
Figure A1 shows an example of using both ldiff and diff on
two versions of a text artifact (use case).

In Figure A2, we invoked ldiff with one iteration (-i 1), a

word hunk tokenizer (-ht word), a cosine hunk similarity measure
(-hm cosine), a hunk similarity cut-level threshold of 0.5 (-HT 0.5:all),
a char line tokenizer (-lt char), a Levensthein line similarity mea-
sure (-lm leven), and a line similarity threshold of 0.4 (-LT 0.4). We
invoked the Unix diff command with its default parameters.

The Unix diff was unable to detect the last added use-case
event, as it maps different adjacent lines into a single block
change. Ldiff instead considered the added event as an ad-
dition, and the merged events as a deletion, combined with
a change.

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

52	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Track Source Code Entity Changes
At the core of our proposed tracking approach is a
line-differencing algorithm (LDA). An LDA treats
source code as an ordered sequence of text lines and
computes the differences between two revisions of
a source code entity without considering the under-
lying syntax. It can provide information at the line
level only as follows:

the line was unchanged between revisions ri
and ri + 1,

■

the line was changed between ri and ri + 1,
the line was present in ri and then deleted in
ri + 1, or
the line was added in ri + 1.

The Unix diff is one of the most widely known
LDA algorithms. It treats lines as a sequence of de-
leted and added lines, but it can’t detect changed
lines. When diff finds a sequence of additions and
deletions, starting from the same position in the
file, it assumes that the block has changed. How-
ever, this might not be the case. A completely differ-
ent block could have replaced the original block, or
part of it. If we consider, for example, source code
lines 2–4 in the top left of Figure 1, changing as
shown in the top right, the Unix diff would produce
the following output:

2,4c2,3
< int b[];
< foo(c,b);
< if (size(b)>0) printf(“D”);

> int b[]={1,2};
> b=foo(c,b);

This output indicates that the block comprising
three lines has changed into a block of two lines.
However, it’s highly unlikely that this was the
case. Instead, it’s very likely that the programmer
has removed the third line and changed the first
and second lines of the first block into the first and
second of the second block. No automatic differ-
encing tool would be able to unambiguously dis-
tinguish changes from the programmer’s addition
and removal, but a tool that can suggest likely
changes would be desirable.

To this end, we proposed an LDA particularly
suitable for code tracking.1 Consider again the top-
left source code fragment in Figure 1, evolving as
shown on the right side. The algorithm starts (step
1) by applying the Unix diff to identify unchanged
lines. Of course, the question arises of whether the
unchanged lines that diff detected are a good ap-
proximation of the set of actually unchanged lines.
The Unix diff searches for the longest of the many
possible common subsequences between the two
file releases. This reflects the assumption that a
programmer tends to minimize the change effort
by reusing existing lines, although this might not
be the programmer’s real intention.

Step 2 compares the hunks—that is, sequences
of adjacent lines—of L and R that aren’t classified
as unchanged (highlighted in purple and tan, re-
spectively). Specifically, the algorithm uses a hunk

■

■

■

Related Work in Differencing Algorithms
Miryung Kim and David Notkin classify code-differencing algorithms into al-
gorithms working on a structured representation of the program, such as an
Abstract Syntax Tree (AST), and algorithms working on a flat representation,
such as a sequence of lines.1

Beat Fluri and his colleagues’ work, Change Distiller, belongs to the first
class and is able to detect with high precision the nature of structural changes
that have occurred in the source code.2 Our line-differencing algorithm can’t
identify these changes. Indeed, the value of change information obtainable
from AST-based algorithms, such as identifying method signature changes
and changes in class hierarchies, is high. However, the inherent computa
tional complexity might limit their application in large-scale systems that have
undergone numerous changes. In addition, a parser must be available, and
system snapshots must be analyzable with that parser. These conditions might
or might not be satisfied, because sometimes developers can leave the system
in an incomplete or inconsistent state, such as with missing files or wrong links.

Steven Reiss showed that source code is trackable through multiple ver-
sions of a file by using relatively simple techniques, such as line matching
based on the Levensthein distance.3

Zhenchang Xing and Eleni Stroulia introduced UML Diff, a differencing
tool that can capture differences between UML models, identifying the addi-
tion, removal, or change of elements such as methods, attributes, and pack-
ages.4 UML Diff is more specific than ldiff and, like Change Distiller, is more
suited for performing detailed change analyses.2

Michael Godfrey and Lijie Zou proposed a method for detecting merging
and splitting of source code entities that considers entities’ various metrics and
callee/caller relationships between entities.5 Their approach is more specific
than ldiff for studying refactoring activities, such as merging and splitting.
Ldiff focuses on tracking sets of lines across file revisions and, above all, on
distinguishing line changes from additions and deletions.

References
	 1.	 M. Kim and D. Notkin, “Program Element Matching for Multi-Version Program Analyses,”

Proc. 2006 Int’l Workshop Mining Software Repositories (MSR 06), ACM Press, 2006, pp.
58–64.

	 2.	 B. Fluri et al., “Change Distilling: Tree Differencing for Fine-Grained Source Code Change
Extraction,” IEEE Trans. Software Eng., vol. 33, no. 11, 2007, pp. 725–743.

	 3.	 S.P. Reiss, “Tracking Source Locations,” Proc. 30th Int’l Conf. Software Eng. (ICSE 08), IEEE CS
Press, 2008, pp. 11–20.

	 4.	 Z. Xing and E. Stroulia, “Differencing Logical UML Models,” Automated Software Eng., vol. 14,
no. 2, 2007, pp. 215–259.

	 5.	 M.W. Godfrey and L. Zou, “Using Origin Analysis to Detect Merging and Splitting of Source
Code Entities,” IEEE Trans. Software Eng., vol. 31, no. 2, 2005, pp. 166–181.

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

	 January/February 2009 I E E E S o f t w a r e � 53

similarity measure to compare all possible pairs
of L and R hunks. Then, in Step 3, the algorithm
takes the topmost HT (hunk threshold) distinct
hunk pairs and, for each pair, performs a line-by-
line comparison. In other words, the algorithm
uses a line similarity measure to compare lines of
the left-side hunk with those of the right-side hunk.
The algorithm classifies line pairs with a similarity
above a given line threshold LT as changed lines
(green lines in Figure 1). All sets of adjacent lines
not classified as changed are new hunks for a sub-
sequent iteration of Steps 2 and 3.

More iterations increase recall, which we’ll dis-
cuss in a moment, because subsequent iterations
will consider combinations of hunks previously
discarded. This process, for example, would be
useful for detecting merge and split, in which each
iteration will match only one source (in the case of
merge) or one target (in the case of split). As the
“Ldiff: A Support Tool” sidebar shows, HT, LT,
and i, the number of iterations, are parameters a
user can specify to calibrate the tool.

Hunk and line similarity metrics work on a fi-
nite set of items extracted from the text, such as
characters, words, or tokens. Set-based metrics
don’t consider ordering information and are suited
to compute hunk similarity. Sequence-based met-
rics take into account the order in which items ap-
pear and are suited for line similarity. Table 1 (on
the next page) shows examples of metrics for com-
puting these similarities. Set-based metrics compute
hunk similarity (Step 2 of Figure 1), while sequence-
based metrics (also known as distances) compute
line similarity (Step 3 of Figure 1). In the studies
and examples we discuss in this article, we always
use the cosine set-based metric on words and the
Levensthein sequence-based metric on characters.

Identify Changes in Software Entities
By relying on the information from the previous
steps, we can determine (see Figure 2 on the next
page) whether

a new software entity of interest appears in a
given snapshot,
an entity’s source code changes in a given
snapshot,
a source code fragment not belonging to the en-
tity changes together with a given entity, or
an existing entity disappears in a given
snapshot.

As Figure 2 shows, we can make these determi-
nations because an entity, identified in a given
snapshot i, is trackable forward and backward by

■

■

■

■

following its changed and unchanged lines. Specifi-
cally, we can get information about whether the en-
tity changed in another snapshot j ≠ i.

Line-Differencing
Algorithm Performance
We compared ldiff’s performance with that of
the widely adopted Unix diff. First, we assessed

int bar(char c) {

 int b[];

 foo(c,b);

< if (size(b)>0) printf(“D”);

 if (!b) {

 printf(”A”);

 } else {

 printf(”C”);

 printf(”B”);

 }

 return 1;

}

int bar(char c) {

 int b[]={1,2};

 b=foo(c,b);

 if (!b) {

 printf(”B”);

 } else {

 printf(”C”);

 printf(”A”);

 }

 return 1;

}

int bar(char c) {

 int b[];

 foo(c,b);

 if (size(b)>0) printf(“D”);

 if (!b) {

 printf(”A”);

 } else {

 printf(”C”);

 printf(”B”);

 }

 return 1;

}

int bar(char c) {

 int b[]={1,2};

 b=foo(c,b);

 if (!b) {

 printf(”B”);

 } else {

 printf(”C”);

 printf(”A”);

 }

 return 1;

}

int bar(char c) {

 int b[];

 foo(c,b);

 if (size(b)>0) printf(“D”);

 if (!b) {

 printf(”A”);

 } else {

 printf(”C”);

 printf(”B”);

 }

 return 1;

}

int bar(char c) {

 int b[]={1,2};

 b=foo(c,b);

 if (!b) {

 printf(”B”);

 } else {

 printf(”C”);

 printf(”A”);

 }

 return 1;

}

Step 1
Find unchanged lines

Start

End

Step 3
Line similarity

RL

1.0

1.0

0.56

1.0

1.0

0.66

0.86

Lo
ng

es
t c

om
m

on
 s

ub
se

qu
en

ce

Step 2
Hunk similarity

(U)nchanged (C)hanged (A)dded (D)eleted

Figure 1. Differencing algorithm. Step 1: The algorithm detects the
unchanged, deleted, and added lines using diff. Step 2: It computes
hunk similarity (with cosine similarity) to trace hunks across releases.
Step 3: It uses line similarity (Levensthein) to identify changed lines.
Finally, the algorithm iterates Steps 2 and 3 on the remaining hunks.

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

54	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

ldiff’s ability to identify moved line blocks and
thus its ability to track a software entity when its
position in a file changes. To this end, we ran-
domly generated new releases of 100 source code
files selected from two open source projects (Post-
greSQL and openSSH) by randomly moving code
fragments within the source code file. The frag-
ments varied from 1 line to a maximum of 1/10
of the total number of lines. We assessed the algo-
rithm in terms of precision and recall:

precision = number of correctly detected moves / ■

 number of detected moves.
recall = number of correctly detected moves /
number of generated moves.

As Figure 3a shows, the algorithm reveals a me-
dian precision of 92 percent and the recall increas-
ing with the number of iterations, from 62 percent
with one iteration to 73 percent with four itera-
tions. Whereas the precision remains almost con-
stant across iterations (it increases 0.7 percent from
the first to the fourth iteration), the recall increases
by 21 percent from the first to the fourth iteration.
This difference is marginally significant: p-value =
0.05 computed using a one-tailed (because we’re
expecting improvements over subsequent steps)
Mann-Whitney test.

The second assessment aimed to evaluate the
ldiff accuracy in identifying changed, added, de-
leted, and unchanged source code lines by clas-
sifying changes in 11 change sets. We randomly
extracted change sets from the ArgoUML Con-
current Versions System (CVS) repository, repre-
senting different types of changes, such as bug fix-
ing, refactoring, or enhancement. We assessed the
tool’s precision by manually identifying false posi-
tives in classifications the algorithm made. The 11
change sets affected from 11 to 72 files (median =
19) and from 32 to 401 lines (median = 42). Figure
3b shows the median ldiff and Unix diff accuracy
and the interquartile range (between the third and
first quartile). (For the ldiff syntax, see the “Ldiff:
A Support Tool” sidebar.)

■

/*
 * foo(revision 1.3)
*/
int foo(float a, int b) {
 return a;
}

Snapshots extracted from
Concurrent Versions System/

Subversion archive

Entity A
added

Entity B
changed

Entity A
 changed

Entity B
 deleted Time

Snapshot 1

Entity A
tracking

Entity B
tracking

Snapshot 2

LDA(1,2) LDA(2,3)

Snapshot 3

LDA(3,4)

Snapshot 4

LDA(4,5)

Snapshot 5

LDA(n – 1, n)

Snapshot n

DEL
CHG
DEL
CHG
CHG

CHG
CHG

CHG
ADD ADD

CHG

ADD

ADD
ADD

DEL
CHG CHG

CHG// foo (revision 1.4)
float foo(int a, int b) {
 if (b!=0)
 return (float)a/b;
 else
 return 0;
}

// foo (revision 1.5)
float foo(int a, int b) {
 int c=0
 if (b!=0)
 return (float)a/b;
 return c;
}

Figure 2. Tracking source code entities across subsequent system snapshots. The proposed approach enables
locating a source code entity in subsequent code snapshots. It allows for identifying when a developer adds, deletes,
or changes a source code line across subsequent snapshots.

Table 1
Similarity metrics

Set-based metric Definition

Dice(X, Y) The ratio between twice the intersection of X and Y and
the sum of X and Y modules

Cosine(X, Y) The cosine of the angle between X and Y represented as
vectors of a Euclidean space

Jaccard(X, Y) The fraction of common items (|X ∩ Y |) with respect to
overall items (|X ∪ Y |)

Overlap(X, Y) 1 if the set X is a subset of Y or the converse; 0 if there
is no overlap; < 1 otherwise

Sequence-based metric Definition

Levensthein(X, Y) Measures the minimum edit distance that transforms X
into Y in terms of add, delete, and substitute operations

Jaro(X, Y) Measures typical spelling deviations

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

	 January/February 2009 I E E E S o f t w a r e � 55

We tested the results’ significance by using
a two-tailed (because we don’t know a priori
whether ldiff performs better than the Unix diff)
Mann-Whitney test. Ldiff outperforms the Unix
diff in identifying changed lines (p-value < 0.001),
whereas the Unix diff performs better in identify-
ing added and deleted lines (p-value = 0.009 and
< 0.0001, respectively). The Unix diff does better
in the latter results because ldiff classifies added
and deleted lines as potential changed lines, gen-
erating both false negatives and false positives. Be-
cause ldiff relies on diff in identifying unchanged
lines, we found no difference in those results,
which had an average precision of 99 percent.

We empirically evaluated the time complexity
by executing the algorithm with different hunk
sizes. Results show that the execution time grows
quadratically (R2-adj = 92.3 percent) with the
number of evaluated line pairs in each hunk. For
example, on a 2-GHz Intel Centrino laptop with 1
Gbyte of RAM, one algorithm iteration takes two
seconds to classify 34 line pairs and 54 seconds to
classify 171 line pairs.

The raw data we used on all of these experi-
ments are available for replication at http://rcost.
unisannio.it/cerulo/ldiff-rawdata.tgz.

Application Examples
Our proposed approach is useful in a variety of
applications. The two examples we discuss in this
section are from a set of empirical studies that we
performed. Errors that the entity (clone or vulner-
ability) detection and ldiff tools introduced affected
the results.

Tracking Source Code Clones
In the past, source code clones were often consid-
ered bad software development practice because
they can potentially cause maintainability problems
owing to the need to propagate changes over them.
However, recent studies have shown that clones
aren’t necessarily a bad thing.5,6 In many cases,
developers have used cloning as a development
practice.

We applied our code-tracking approach to
analyze change propagation across clones as the
Bauhaus ccdiml tool (www.bauhaus-stuttgart.de/
bauhaus/index-english.html) detected them. Specifi-
cally, we classified cases in which

changes are consistently propagated (within the
same change set) to all clone fragments belong-
ing to the same clone class;
changes are propagated with some delay—for
example, one clone fragment is modified in a

■

■

change set and another fragment undergoes the
same change in a later change set; and
clones evolve independently—for example, to
implement different features.

As Figure 4a (on the next page) shows, the percent-
age of late propagations is, indeed, low (16 percent),
at least for the reported case study (PostgreSQL;
www.postgresql.org). Most of the clones either
change consistently (43 percent) or evolve indepen-
dently (41 percent). Results for other case studies
(such as ArgoUML; http://argouml.tigris.org) indi-
cate even lower late-propagation rates (3 percent)
and a majority of consistent changes (61 percent).

The ldiff tool’s ability to track clone evolu-
tion makes it suitable for use in implementing rec-
ommender systems that can automatically track
clone change propagations and warn develop-
ers of improperly propagated changes. This ap-
proach can be an alternative to asking developers
to explicitly label clone fragments (detected through

■

(a)

(b)

Number of iterations

Kind of changed detected

1 2 3 4

Changed Added Deleted Unchanged

1.0

0.8

0.6

0.4

0.2

0

Pr
ec

is
io

n
an

d
re

ca
ll

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0

Pr
ec

is
io

n

Precision

Recall

Idiff

Unix diff

Figure 3. Line-differencing performance evaluation. (a) Measuring the
ability to identify moved lines on a set of 100 source code files showed a
marginally significant difference in recall (ldiff parameters: LT = 1,
HT = top 3, i = 1 … 4). (b) Measuring the precision of ldiff and Unix diff
to identify changed, added, deleted, and unchanged lines showed
strengths for each approach (ldiff parameters: LT = 0.4, HT = top 3, i = 1).

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

56	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

clone-detection tools) for tracking.7 Such a solu-
tion could help avoid, for example, the same bug
appearing twice in the system. This was the case
with PostgreSQL, in which a source code fragment
underwent a bug fixing. Developers discovered
the same bug six months later because the change
hadn’t been correctly propagated. The developer
who committed the second change wrote in the
CVS note, “I had previously fixed the identical bug
in oper_select_candidate but didn’t realize that the same
error was repeated over here.”

Monitoring Vulnerable Instructions
Avoiding security attacks is crucial when develop-
ing network applications. Attacks, such as buffer
overflows and cross-site scripting, are more and
more frequent, causing unauthorized access to sys-
tems and data or denials of service. Static-analysis
tools such as Splint (www.splint.org) enable detec-

tion of instructions that could potentially cause se-
curity attacks.

In addition to simply detecting vulnerable in-
structions, analyzing how the developers maintain
them over time would also be valuable, tracking
changes from introduction until they disappear
from the system. In particular, it’s possible to com-
pare the decay time, or the total time a vulnerabil-
ity is in the system. This process is similar to Sung-
hun Kim and Michael Ernst’s method for studying
how developers fixed warnings that compilers pro-
duced.8 Figure 4b compares the decay time of dif-
ferent types of vulnerabilities Splint detected in the
Squid Web proxy (www.squid-cache.org) source
code. It further indicates how developers removed
vulnerabilities such as buffer overflows and mem-
ory allocation problems more quickly than others.
Also possible is modeling the vulnerability decay
by means of a probability distribution or estimat-
ing the likelihood that removing a vulnerability is
necessary.9 We found that for some vulnerability
categories (such as buffer overflows), the likelihood
a vulnerability must disappear from the system de-
creases exponentially with time.

W e have shown how ldiff is able to over-
come the Unix diff’s limitations to
identify changed text lines, and how it

can be used in the context of software evolution
studies—for example, to track the evolution of
source code clones or monitor vulnerable instruc-
tions. Future work aims at integrating ldiff in an
IDE and realizing an ldiff front end able to visually
trace the evolution of software artifacts.

References
	 1.	 G. Canfora, L. Cerulo, and M. Di Penta, “Identifying

Changed Source Code Lines from Version Reposito-
ries,” Proc. 4th Int’l Workshop Mining Software Re-
positories (MSR 07), IEEE CS Press, 2007, pp. 14–22.

	 2.	 B. Fluri et al., “Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction,”
IEEE Trans. Software Eng., vol. 33, no. 11, 2007, pp.
725–743.

	 3.	 H. Gall, M. Jazayeri, and J. Krajewski, “CVS Release
History Data for Detecting Logical Couplings,” Proc.
6th Int’l Workshop Principles of Software Evolution
(IWPSE 03), IEEE CS Press, 2003, pp. 13–23.

	 4.	 T. Zimmermann et al., “Mining Version Histories
to Guide Software Changes,” Proc. 26th Int’l Conf.
Software Eng. (ICSE 04), IEEE CS Press, 2004, pp.
563–572.

	 5.	 C. Kapser and M.W. Godfrey, “‘Cloning Considered
Harmful’ Considered Harmful,” Proc. 13th Working
Conf. Reverse Eng., IEEE CS Press, 2006, pp. 19–28.

2,500

2,000

1,500

1,000

500

0

D
ec

ay
 (d

ay
s)

Late propagation
16%

Independent evolution
41%

Consistent changes
43%

(a)

(b)

Dead codeBuffer
overflow

Control
flow

Type
mismatch

Memory

Figure 4. Source code clone tracking. (a) The percentage of clone
fragments that Bauhaus ccdiml in PostgreSQL detected as undergoing
consistent changes, independent evolution, or late propagation.
(b) Box plots of the decay for vulnerable instructions that Splint
detected in the Squid project.

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

	 January/February 2009 I E E E S o f t w a r e � 57

	 6.	 M. Kim et al., “An Empirical Study of Code Clone Gene
alogies,” Proc. European Software Eng. Conf. and the
ACM Symp. Foundations of Software Eng., ACM Press,
2005, pp. 187–196.

	 7.	 E. Duala-Ekoko and M.P. Robillard, “Tracking Code
Clones in Evolving Software,” Proc. 29th Int’l Conf.
Software Eng. (ICSE 07), IEEE CS Press, 2007, pp.
158–167.

	 8.	 S. Kim and M.D. Ernst, “Which Warnings Should I
Fix First?” Proc. 6th Joint Meeting European Soft-
ware Eng. Conf. and the ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., ACM Press, 2007, pp.
45–54.

	 9.	 M. Di Penta, L. Cerulo, and L. Aversano, “The Evolu-
tion and Decay of Statically Detected Source Code Vul-
nerabilities,” Proc. 8th IEEE Working Conf. Source
Code Analysis and Manipulation (SCAM 08), IEEE CS
Press, 2008, pp. 101−110.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Gerardo Canfora is a full professor in the University of Sannio Department of
Engineering. His research interests include service-centric software engineering, software
maintenance, and empirical software engineering. Canfora received a laurea degree in
electronic engineering from the University of Naples. He’s a member of the IEEE Computer
Society. Contact him at canfora@unisannio.it.

Luigi Cerulo is a postdoctoral researcher in the University of Sannio Department
of Engineering. His research interests include mining software repositories, software
maintenance, and empirical software engineering. Cerulo received a PhD in computer
engineering from the University of Sannio. He’s a member of the ACM. Contact him at
lcerulo@unisannio.it.

Massimiliano Di Penta is an assistant professor in the University of Sannio
Department of Engineering. His research interests include empirical software engineering,
software maintenance, and search-based software engineering. Di Penta received a PhD in
computer engineering from the University of Sannio. He’s a member of the IEEE, the IEEE
Computer Society, and the ACM. Contact him at dipenta@unisannio.it.

Advertising Sales Representatives

Recruitment:

Mid Atlantic
Lisa Rinaldo
Phone: +1 732 772 0160
Fax: +1 732 772 0164
Email: lr.ieeemedia@ieee.org

New England
John Restchack
Phone: +1 212 419 7578
Fax: +1 212 419 7589
Email: j.restchack@ieee.org

Southeast
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Northwest/Southern CA
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

Product:

US East
Joseph M. Donnelly
Phone: +1 732 526 7119
Email: jdonnelly@briggsdonnelly.com

US Central
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

US West
Lynne Stickrod
Phone: +1 415 503 3936
Fax: +1 415 503 3937
Email: l.stickrod@att.net

Europe
Sven Anacker
Phone: +49 202 27169 11
Fax: +49 202 27169 20
Email: sanacker@intermediapartners.de

Advertising Information
January/February 2009

IEEE Software

Advertiser� Page
ICSM 2009� Cover 2
Nu Info Systems, Inc.� 8
SD West 2009� Cover 3
Seapine Software Inc.� Cover 4
WICSA 2009� 1
Classified Advertising� 7

Advertising Personnel
Marion Delaney
IEEE Media, Advertising Dir.
Phone: +1 415 863 4717
Email: md.ieeemedia@ieee.org

Marian Anderson
Sr. Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
Sr. Business Development Mgr.
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore. Restrictions apply.

