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Tracking Your Changes:
A Language-Independent Approach 

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta, University of Sannio

Based on a  
novel differencing 
algorithm, this 
approach to tracking 
source code evolution 
in real-world software 
systems achieves 
acceptable precision 
and overcomes the 
Unix diff’s versioning 
limitations.

V
ersioning and bug-tracking systems are invaluable assets for large software proj-
ects that involve developers spread worldwide and numerous users reporting 
bugs and proposing enhancements. In addition to supporting development, ver-
sioning systems are a precious source of information for studying or monitoring 

a software system’s evolution.

Such monitoring requires tracking source code 
artifacts across file revisions. Versioning systems 
perform this tracking using the Unix diff algo-
rithm, which, to preserve space, treats any change 
as the minimum sequence of additions and de-
letions. This process limits diff’s ability to dis-
tinguish line additions and removals from line 
changes. If a source code line changes, the version-
ing system records it as the removal of the old line 
and the addition of the new one. This makes it dif-
ficult to discern whether the change only partially 
modified the old line or completely replaced it. 

A degree of subjectivity is inherent in such a 
classification because humans can disagree on the 
extent to which something has changed. Still, we 
foresee differencing algorithms that can make these 
classifications within a reasonable margin of error.

We present an approach for tracking software 
entities across multiple revisions of a file that relies 
on our recently introduced language-independent 
differencing algorithm.1 This algorithm over-
comes diff’s limitations and, unlike algorithms 
based on the code Abstract Syntax Tree (AST),2 
doesn’t require the code to be parsed. This makes 
the algorithm suitable, if a detailed classification 
of the change isn’t needed, for tracking the evolu-
tion of software entities treatable as a sequence of 
lines, such as source code, but also requirements, 
use cases, and test cases. 

We implemented the differencing algorithm in 
a tool named ldiff (line differencing), which has 
syntax and output similar to the Unix diff. This 
compatibility means that the tool’s use by diff 
users and integration in integrated development 
environments (IDEs) or recommender systems 
relying on a Unix-diff-like algorithm can be im-
mediate. (For a detailed description of ldiff, see 
the “Ldiff: A Support Tool” sidebar, and, for ad-
ditional approaches to tracking, see the “Related 
Work in Differencing Algorithms” sidebar.) 

Software-Entity Tracking
A software entity is a set of (not necessarily adja-
cent) lines from a textual artifact, such as a source 
code clone, a source code line containing a vulner-
able statement, or a comment. Tracking the evolu-
tion of an entity within a file comprises four stages 
that aim to identify the units of analysis, identify 
the entities to be tracked, track the entities, and 
identify entity changes. 

Identify the Units of Analysis
A software entity’s evolution can be apparent across 
system releases or single file commits, or by group-
ing logically related commits. As Harald Gall and 
his colleagues proposed, a software system’s evolu-
tion is viewable as a sequence of snapshots.3 These 
snapshots, they contend, develop from change sets, 
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which represent the logical changes a developer 
performs in terms of added, deleted, and changed 
source code lines. Various approaches are available 
for reconstructing such a sequence. We chose the 
method that Thomas Zimmermann and his col-
leagues developed.4 Their approach considers the 
sequences of file revisions that share the same au-
thor, branch, commit notes, and so on, such that 
the difference between the time stamps of two sub-
sequent commits is 200 seconds or less.

Identify the Entity of Interest
Before tracking an entity’s evolution, we must first 
identify the entity of interest in the source code or 
textual file. The process can be manual (for exam-
ple, the developer identifies a source code entity to 
track) or automatic (as with clones or vulnerabili-
ties, which we’ll discuss in a moment). Either option 
identifies the entity as a set of textual or source code 
file lines. The next stages will track the changes in 
these lines.

Ldiff: A Support Tool

New event

Merge

New event

1: Use case name: Rent Video
2:
3: Primary actor: Clerk
 ...
17: Basic flow of events: 
18:
19: - Clerk enters Customer ID.
20: - Clerk enters rental identifier.
21: - System records rental line item and presents item description.
22:           (Clerk repeats “System records …” until indicates done.)
23: - System displays total.
24: - Customer pays.  System handles payment.
25: - Clerk requests rental report.
26: - System outputs it. Clerk gives it to Customer.

1: Use case name: Rent Video
2:
3: Primary actor: Clerk
 ...
17: Basic flow of events: 
18:
19: - Clerk authenticates itself.
20: - Clerk enters Customer ID.
21: - Clerk enters rental identifier.
22: - System records rental line item and presents item description.
23:           (Clerk repeats “System records …” until indicates done.)
24: - System displays total.
25: - Customer pays.  System handles payment.
26: - System outputs rental report.
27: - Clerk inserts payment information.

$ ldiff.pl -i 1 -ht word -hm cosine -HT 0.5:all -lt char -lm leven -LT 0.4 usecase-1.1.txt usecase-1.2.txt
18a19,19
> - Clerk authenticates itself.
25,25c26,26
< - Clerk requests rental report.
---
> - System outputs rental report.
25a27,27
> - Clerk inserts payment information.
26,26d26
< - System outputs it. Clerk gives it to Customer.

(1)

(2)

$ diff usecase-1.1.txt usecase-1.2.txt
18a19
> - Clerk authenticates itself.
25,26c26,27
< - Clerk requests rental report.
< - System outputs it. Clerk gives it to Customer.
---
> - System outputs rental report.
> - Clerk inserts payment information.

usecase-1.1.txt usecase-1.2.txt

Figure A. Comparing approaches. (1) We used ldiff and diff on two versions of a text artifact. (2) The Unix diff 
was unable to detect the last added use-case event.

Our approach to tracking software entities relies on ldiff, a 
differencing algorithm that has syntax and output similar to 
the Unix diff. A Perl implementation of our differencing algo-
rithm is available at http://rcost.unisannio.it/cerulo/tools.html. 
The tool supports various hunk similarity metrics (cosine, Jac-
card, dice, and overlap) and text item extraction techniques 
(chars, words, n–grams, and C/C++/Java language tokens). 
Figure A1 shows an example of using both ldiff and diff on 
two versions of a text artifact (use case).

In Figure A2, we invoked ldiff with one iteration (-i 1), a 

word hunk tokenizer (-ht word), a cosine hunk similarity measure 
(-hm cosine), a hunk similarity cut-level threshold of 0.5 (-HT 0.5:all), 
a char line tokenizer (-lt char), a Levensthein line similarity mea-
sure (-lm leven), and a line similarity threshold of 0.4 (-LT 0.4). We 
invoked the Unix diff command with its default parameters.

The Unix diff was unable to detect the last added use-case 
event, as it maps different adjacent lines into a single block 
change. Ldiff instead considered the added event as an ad-
dition, and the merged events as a deletion, combined with 
a change.
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Track Source Code Entity Changes 
At the core of our proposed tracking approach is a 
line-differencing algorithm (LDA). An LDA treats 
source code as an ordered sequence of text lines and 
computes the differences between two revisions of 
a source code entity without considering the under-
lying syntax. It can provide information at the line 
level only as follows: 

the line was unchanged between revisions ri 
and ri + 1, 

■

the line was changed between ri and ri + 1, 
the line was present in ri and then deleted in 
ri + 1, or 
the line was added in ri + 1. 

The Unix diff is one of the most widely known 
LDA algorithms. It treats lines as a sequence of de-
leted and added lines, but it can’t detect changed 
lines. When diff finds a sequence of additions and 
deletions, starting from the same position in the 
file, it assumes that the block has changed. How-
ever, this might not be the case. A completely differ-
ent block could have replaced the original block, or 
part of it. If we consider, for example, source code 
lines 2–4 in the top left of Figure 1, changing as 
shown in the top right, the Unix diff would produce 
the following output:

2,4c2,3
< int b[];
< foo(c,b);
< if (size(b)>0) printf(“D”);
---
> int b[]={1,2}; 
> b=foo(c,b); 

This output indicates that the block comprising 
three lines has changed into a block of two lines. 
However, it’s highly unlikely that this was the 
case. Instead, it’s very likely that the programmer 
has removed the third line and changed the first 
and second lines of the first block into the first and 
second of the second block. No automatic differ-
encing tool would be able to unambiguously dis-
tinguish changes from the programmer’s addition 
and removal, but a tool that can suggest likely 
changes would be desirable. 

To this end, we proposed an LDA particularly 
suitable for code tracking.1 Consider again the top-
left source code fragment in Figure 1, evolving as 
shown on the right side. The algorithm starts (step 
1) by applying the Unix diff to identify unchanged 
lines. Of course, the question arises of whether the 
unchanged lines that diff detected are a good ap-
proximation of the set of actually unchanged lines. 
The Unix diff searches for the longest of the many 
possible common subsequences between the two 
file releases. This reflects the assumption that a 
programmer tends to minimize the change effort 
by reusing existing lines, although this might not 
be the programmer’s real intention. 

Step 2 compares the hunks—that is, sequences 
of adjacent lines—of L and R that aren’t classified 
as unchanged (highlighted in purple and tan, re-
spectively). Specifically, the algorithm uses a hunk 

■

■

■

Related Work in Differencing Algorithms
Miryung Kim and David Notkin classify code-differencing algorithms into al-
gorithms working on a structured representation of the program, such as an 
Abstract Syntax Tree (AST), and algorithms working on a flat representation, 
such as a sequence of lines.1

Beat Fluri and his colleagues’ work, Change Distiller, belongs to the first 
class and is able to detect with high precision the nature of structural changes 
that have occurred in the source code.2 Our line-differencing algorithm can’t 
identify these changes. Indeed, the value of change information obtainable 
from AST-based algorithms, such as identifying method signature changes 
and changes in class hierarchies, is high. However, the inherent computa
tional complexity might limit their application in large-scale systems that have 
undergone numerous changes. In addition, a parser must be available, and 
system snapshots must be analyzable with that parser. These conditions might 
or might not be satisfied, because sometimes developers can leave the system 
in an incomplete or inconsistent state, such as with missing files or wrong links. 

Steven Reiss showed that source code is trackable through multiple ver-
sions of a file by using relatively simple techniques, such as line matching 
based on the Levensthein distance.3 

Zhenchang Xing and Eleni Stroulia introduced UML Diff, a differencing 
tool that can capture differences between UML models, identifying the addi-
tion, removal, or change of elements such as methods, attributes, and pack-
ages.4 UML Diff is more specific than ldiff and, like Change Distiller, is more 
suited for performing detailed change analyses.2

Michael Godfrey and Lijie Zou proposed a method for detecting merging 
and splitting of source code entities that considers entities’ various metrics and 
callee/caller relationships between entities.5 Their approach is more specific 
than ldiff for studying refactoring activities, such as merging and splitting. 
Ldiff focuses on tracking sets of lines across file revisions and, above all, on 
distinguishing line changes from additions and deletions. 
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similarity measure to compare all possible pairs 
of L and R hunks. Then, in Step 3, the algorithm 
takes the topmost HT (hunk threshold) distinct 
hunk pairs and, for each pair, performs a line-by-
line comparison. In other words, the algorithm 
uses a line similarity measure to compare lines of 
the left-side hunk with those of the right-side hunk. 
The algorithm classifies line pairs with a similarity 
above a given line threshold LT as changed lines 
(green lines in Figure 1). All sets of adjacent lines 
not classified as changed are new hunks for a sub-
sequent iteration of Steps 2 and 3.

More iterations increase recall, which we’ll dis-
cuss in a moment, because subsequent iterations 
will consider combinations of hunks previously 
discarded. This process, for example, would be 
useful for detecting merge and split, in which each 
iteration will match only one source (in the case of 
merge) or one target (in the case of split). As the 
“Ldiff: A Support Tool” sidebar shows, HT, LT, 
and i, the number of iterations, are parameters a 
user can specify to calibrate the tool. 

Hunk and line similarity metrics work on a fi-
nite set of items extracted from the text, such as 
characters, words, or tokens. Set-based metrics 
don’t consider ordering information and are suited 
to compute hunk similarity. Sequence-based met-
rics take into account the order in which items ap-
pear and are suited for line similarity. Table 1 (on 
the next page) shows examples of metrics for com-
puting these similarities. Set-based metrics compute 
hunk similarity (Step 2 of Figure 1), while sequence-
based metrics (also known as distances) compute 
line similarity (Step 3 of Figure 1). In the studies 
and examples we discuss in this article, we always 
use the cosine set-based metric on words and the 
Levensthein sequence-based metric on characters.

Identify Changes in Software Entities
By relying on the information from the previous 
steps, we can determine (see Figure 2 on the next 
page) whether

a new software entity of interest appears in a 
given snapshot, 
an entity’s source code changes in a given 
snapshot,
a source code fragment not belonging to the en-
tity changes together with a given entity, or
an existing entity disappears in a given 
snapshot. 

As Figure 2 shows, we can make these determi-
nations because an entity, identified in a given 
snapshot i, is trackable forward and backward by 

■

■

■

■

following its changed and unchanged lines. Specifi-
cally, we can get information about whether the en-
tity changed in another snapshot j ≠ i.

Line-Differencing  
Algorithm Performance
We compared ldiff’s performance with that of 
the widely adopted Unix diff. First, we assessed 

int bar(char c) {

   int b[];

   foo(c,b);

< if (size(b)>0) printf(“D”);

   if (!b) {

      printf(”A”);

   } else {

      printf(”C”);

      printf(”B”);

   }

   return 1;

}

int bar(char c) {

   int b[]={1,2};

   b=foo(c,b);

   if (!b) {

      printf(”B”);

   } else {

      printf(”C”);

      printf(”A”);

   }

   return 1;

}

int bar(char c) {

   int b[];

   foo(c,b);

   if (size(b)>0) printf(“D”);

   if (!b) {

      printf(”A”);

   } else {

      printf(”C”);

      printf(”B”);

   } 

   return 1;

}

int bar(char c) {

   int b[]={1,2};

   b=foo(c,b);

   if (!b) {

      printf(”B”);

   } else {

      printf(”C”);

      printf(”A”);

   }

   return 1;

}

int bar(char c) {

   int b[];

   foo(c,b);

   if (size(b)>0) printf(“D”);

   if (!b) {

      printf(”A”);

   }  else {

      printf(”C”);

      printf(”B”);

   }

   return 1;

} 

int bar(char c) {

   int b[]={1,2};

   b=foo(c,b);

   if (!b) {

      printf(”B”);

   } else {

      printf(”C”);

      printf(”A”);

   }

   return 1;

}
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Figure 1. Differencing algorithm. Step 1: The algorithm detects the 
unchanged, deleted, and added lines using diff. Step 2: It computes 
hunk similarity (with cosine similarity) to trace hunks across releases. 
Step 3: It uses line similarity (Levensthein) to identify changed lines. 
Finally, the algorithm iterates Steps 2 and 3 on the remaining hunks.
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ldiff’s ability to identify moved line blocks and 
thus its ability to track a software entity when its 
position in a file changes. To this end, we ran-
domly generated new releases of 100 source code 
files selected from two open source projects (Post-
greSQL and openSSH) by randomly moving code 
fragments within the source code file. The frag-
ments varied from 1 line to a maximum of 1/10 
of the total number of lines. We assessed the algo-
rithm in terms of precision and recall:

precision = number of correctly detected moves / ■

 number of detected moves.
recall = number of correctly detected moves / 
number of generated moves.

As Figure 3a shows, the algorithm reveals a me-
dian precision of 92 percent and the recall increas-
ing with the number of iterations, from 62 percent 
with one iteration to 73 percent with four itera-
tions. Whereas the precision remains almost con-
stant across iterations (it increases 0.7 percent from 
the first to the fourth iteration), the recall increases 
by 21 percent from the first to the fourth iteration. 
This difference is marginally significant: p-value = 
0.05 computed using a one-tailed (because we’re 
expecting improvements over subsequent steps) 
Mann-Whitney test. 

The second assessment aimed to evaluate the 
ldiff accuracy in identifying changed, added, de-
leted, and unchanged source code lines by clas-
sifying changes in 11 change sets. We randomly 
extracted change sets from the ArgoUML Con-
current Versions System (CVS) repository, repre-
senting different types of changes, such as bug fix-
ing, refactoring, or enhancement. We assessed the 
tool’s precision by manually identifying false posi-
tives in classifications the algorithm made. The 11 
change sets affected from 11 to 72 files (median = 
19) and from 32 to 401 lines (median = 42). Figure 
3b shows the median ldiff and Unix diff accuracy 
and the interquartile range (between the third and 
first quartile). (For the ldiff syntax, see the “Ldiff: 
A Support Tool” sidebar.)

■

/*
 * foo(revision 1.3)
*/
int foo(float a, int b) {
  return a;
}

Snapshots extracted from
Concurrent Versions System/

Subversion archive

Entity A
added

Entity B
changed

Entity A
 changed

Entity B
 deleted Time

Snapshot 1

Entity A
tracking

 

Entity B
tracking

 

Snapshot 2

LDA(1,2) LDA(2,3)

Snapshot 3

LDA(3,4)

Snapshot 4

LDA(4,5)

Snapshot 5

LDA(n – 1, n )

Snapshot n

DEL
CHG
DEL
CHG
CHG

CHG
CHG

CHG
ADD ADD

CHG

ADD

ADD
ADD

DEL
CHG CHG

CHG// foo (revision 1.4)
float foo(int a, int b) {
  if (b!=0)
    return (float)a/b;
  else
    return 0;
}

// foo (revision 1.5)
float foo(int a, int b) {
  int c=0
  if (b!=0)
    return (float)a/b;
       return c;
}

Figure 2. Tracking source code entities across subsequent system snapshots. The proposed approach enables 
locating a source code entity in subsequent code snapshots. It allows for identifying when a developer adds, deletes, 
or changes a source code line across subsequent snapshots. 

Table 1
Similarity metrics

Set-based metric Definition

Dice(X, Y ) The ratio between twice the intersection of X and Y and 
the sum of X and Y modules

Cosine(X, Y ) The cosine of the angle between X and Y represented as 
vectors of a Euclidean space

Jaccard(X, Y ) The fraction of common items (|X ∩ Y |) with respect to 
overall items (|X ∪ Y |)

Overlap(X, Y ) 1 if the set X is a subset of Y or the converse; 0 if there 
is no overlap; < 1 otherwise

Sequence-based metric Definition

Levensthein(X, Y ) Measures the minimum edit distance that transforms X 
into Y in terms of add, delete, and substitute operations

Jaro(X, Y ) Measures typical spelling deviations

Authorized licensed use limited to: Cal Poly State University. Downloaded on February 5, 2009 at 12:29 from IEEE Xplore.  Restrictions apply.



	 January/February 2009   I E E E  S o f t w a r e � 55

We tested the results’ significance by using 
a two-tailed (because we don’t know a priori 
whether ldiff performs better than the Unix diff) 
Mann-Whitney test. Ldiff outperforms the Unix 
diff in identifying changed lines (p-value < 0.001), 
whereas the Unix diff performs better in identify-
ing added and deleted lines (p-value = 0.009 and  
< 0.0001, respectively). The Unix diff does better 
in the latter results because ldiff classifies added 
and deleted lines as potential changed lines, gen-
erating both false negatives and false positives. Be-
cause ldiff relies on diff in identifying unchanged 
lines, we found no difference in those results, 
which had an average precision of 99 percent.

We empirically evaluated the time complexity 
by executing the algorithm with different hunk 
sizes. Results show that the execution time grows 
quadratically (R2-adj = 92.3 percent) with the 
number of evaluated line pairs in each hunk. For 
example, on a 2-GHz Intel Centrino laptop with 1 
Gbyte of RAM, one algorithm iteration takes two 
seconds to classify 34 line pairs and 54 seconds to 
classify 171 line pairs. 

The raw data we used on all of these experi-
ments are available for replication at http://rcost.
unisannio.it/cerulo/ldiff-rawdata.tgz. 

Application Examples 
Our proposed approach is useful in a variety of 
applications. The two examples we discuss in this 
section are from a set of empirical studies that we 
performed. Errors that the entity (clone or vulner-
ability) detection and ldiff tools introduced affected 
the results. 

Tracking Source Code Clones
In the past, source code clones were often consid-
ered bad software development practice because 
they can potentially cause maintainability problems 
owing to the need to propagate changes over them. 
However, recent studies have shown that clones 
aren’t necessarily a bad thing.5,6 In many cases, 
developers have used cloning as a development 
practice.

We applied our code-tracking approach to 
analyze change propagation across clones as the 
Bauhaus ccdiml tool (www.bauhaus-stuttgart.de/
bauhaus/index-english.html) detected them. Specifi-
cally, we classified cases in which

changes are consistently propagated (within the 
same change set) to all clone fragments belong-
ing to the same clone class;
changes are propagated with some delay—for 
example, one clone fragment is modified in a 

■

■

change set and another fragment undergoes the 
same change in a later change set; and 
clones evolve independently—for example, to 
implement different features.

As Figure 4a (on the next page) shows, the percent-
age of late propagations is, indeed, low (16 percent), 
at least for the reported case study (PostgreSQL; 
www.postgresql.org). Most of the clones either 
change consistently (43 percent) or evolve indepen-
dently (41 percent). Results for other case studies 
(such as ArgoUML; http://argouml.tigris.org) indi-
cate even lower late-propagation rates (3 percent) 
and a majority of consistent changes (61 percent). 

The ldiff tool’s ability to track clone evolu-
tion makes it suitable for use in implementing rec-
ommender systems that can automatically track 
clone change propagations and warn develop-
ers of improperly propagated changes. This ap-
proach can be an alternative to asking developers 
to explicitly label clone fragments (detected through  

■
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Figure 3. Line-differencing performance evaluation. (a) Measuring the 
ability to identify moved lines on a set of 100 source code files showed a 
marginally significant difference in recall (ldiff parameters: LT = 1, 
HT = top 3, i = 1 … 4). (b) Measuring the precision of ldiff and Unix diff 
to identify changed, added, deleted, and unchanged lines showed 
strengths for each approach (ldiff parameters: LT = 0.4, HT = top 3, i = 1).
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clone-detection tools) for tracking.7 Such a solu-
tion could help avoid, for example, the same bug 
appearing twice in the system. This was the case 
with PostgreSQL, in which a source code fragment 
underwent a bug fixing. Developers discovered 
the same bug six months later because the change 
hadn’t been correctly propagated. The developer 
who committed the second change wrote in the 
CVS note, “I had previously fixed the identical bug 
in oper_select_candidate but didn’t realize that the same 
error was repeated over here.” 

Monitoring Vulnerable Instructions
Avoiding security attacks is crucial when develop-
ing network applications. Attacks, such as buffer 
overflows and cross-site scripting, are more and 
more frequent, causing unauthorized access to sys-
tems and data or denials of service. Static-analysis 
tools such as Splint (www.splint.org) enable detec-

tion of instructions that could potentially cause se-
curity attacks. 

In addition to simply detecting vulnerable in-
structions, analyzing how the developers maintain 
them over time would also be valuable, tracking 
changes from introduction until they disappear 
from the system. In particular, it’s possible to com-
pare the decay time, or the total time a vulnerabil-
ity is in the system. This process is similar to Sung-
hun Kim and Michael Ernst’s method for studying 
how developers fixed warnings that compilers pro-
duced.8 Figure 4b compares the decay time of dif-
ferent types of vulnerabilities Splint detected in the 
Squid Web proxy (www.squid-cache.org) source 
code. It further indicates how developers removed 
vulnerabilities such as buffer overflows and mem-
ory allocation problems more quickly than others. 
Also possible is modeling the vulnerability decay 
by means of a probability distribution or estimat-
ing the likelihood that removing a vulnerability is 
necessary.9 We found that for some vulnerability 
categories (such as buffer overflows), the likelihood 
a vulnerability must disappear from the system de-
creases exponentially with time.

W e have shown how ldiff is able to over-
come the Unix diff’s limitations to 
identify changed text lines, and how it 

can be used in the context of software evolution 
studies—for example, to track the evolution of 
source code clones or monitor vulnerable instruc-
tions. Future work aims at integrating ldiff in an 
IDE and realizing an ldiff front end able to visually 
trace the evolution of software artifacts.
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